세미나

Understanding new material quantum dots applied with new and renewable energy

Next generation materials for display and solar cells  Gi-Hwan Kim 소속 School of Materials Science and Engineering Gyeongsang National University (GNU), Republic of Korea E-mail: ghkim@gnu.ac.kr     Quantum dots and perovskite materials are two of the most promising technologies being developed for the next generation of solar cells and LEDs. Both of these technologies are seen as a major breakthrough in the field of renewable energy and have the potential to revolutionize the way we harness and utilize energy.   Quantum dots are tiny semiconductor particles that exhibit unique optical and electronic properties due to their small size. They are capable of absorbing and emitting light of a specific wavelength, making them an ideal material for use in solar cells and LEDs. One of the key advantages of using quantum dots in solar cells is that they can be engineered to absorb different wavelengths of light, allowing for the capture of more solar energy than traditional solar cells. Additionally, quantum dots can also be used to enhance the efficiency of LEDs by improving their brightness and color accuracy. Perovskite materials are a class of materials that have gained significant attention in the field of solar cell development in recent years due to their high efficiency and low cost. Perovskite solar cells are made by depositing a thin layer of perovskite material onto a conductive substrate, which can be produced using simple and inexpensive methods. The efficiency of perovskite solar cells has increased rapidly in recent years, with some devices achieving efficiencies that are comparable to traditional silicon-based solar cells. Perovskite materials can also be used to create efficient and bright LEDs by improving the quality and stability of the materials used in their construction. Research into the development of quantum dot and perovskite-based solar cells and LEDs is ongoing, and significant progress has been made in recent years. However, there are still several challenges that must be overcome before these technologies can be widely adopted. For example, quantum dots can be expensive to produce, and there are concerns about their toxicity and environmental impact. Perovskite materials are also prone to degradation when exposed to moisture and oxygen, which can limit their long-term stability and reliability. Despite these challenges, the potential benefits of quantum dot and perovskite-based solar cells and LEDs are significant. These technologies have the potential to significantly reduce the cost of renewable energy and improve the efficiency and performance of lighting systems. As research continues, it is likely that we will see these technologies become increasingly important in the development of next-generation solar cells and LEDs, helping to create a brighter and more sustainable future for us all....

Halide Perovskite Memristors for Neuromorphic Computing Devices

Halide Perovskite Memristors for Neuromorphic Computing Devices   Ho Won Jang   Department of Materials Science and Engineering, Seoul National University, Korea   E-mail: hwjang@snu.ac.kr     Halide perovskites, fascinating memristive materials owing to mixed ionic-electronic conductivity, have been attracting great attention as artificial synapses recently. However, polycrystalline nature in thin film form...

Ab initio DMFT methodologies for correlated quantum materials

Ab initio DMFT methodologies for correlated quantum materials Sangkook Choi1*, Byungkyun. Kang2, Patrick Semon3, Andrey Kutepov3, Mark van Schilfgaarde4, Siheon Ryee5, Myung Joon Han6, Walber. H. Brito7, Kristjan Haule8, Gabriel Kotliar8 1School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea 2Department of Physics and Astronomy,...

Evaluation methods, standards, and specifications for additive manufacturing

After the news about the disease of teachers related to additive manufacturing in Korea, there has been a lot of discussion on how to evaluate the stability of additive manufacturing. To solve this problem, all relevant government departments jointly announced measures. The announced measures include...

Strategic Approach to Enhance Carbon Conservation in Biofuels Derived from Organic Wastes

  Strategic approach to enhance carbon conservation in biofuels derived from lignocellulosic biomass and livestock   Eilhann E. Kwon Hanyang University, Seoul, Korea ek2148@hanyang.ac.kr    Since an era of industrialization, carbon inputs (from our anthropogenic activities) beyond the planet’s full carbon sequestration by assimilating CO2 through the natural carbon cycle have been pointed out as one of the critical factors triggering the global environmental problems (global warming). As such, the use of carbon neutral energies/chemicals has gained a big momentum because these efforts could offer a precautipus measure to mitigate catastrophic consequences from global warming. A great deal of researches on biofuel/biorefinery has been extensively carried out over the last decade. Nonetheless, carbon loss from the productions of biofuel/chemical (derived from biomass) has not be discussed with the fully transparent manners. Note that biomass is a carbon-based material among the reneawable resources. As such, it could be of great importance to developed a new technical conversion platform for biofuel/chemical from biomass to minimize the unwanted carbon loss. Here in this study, the new technical development to increase the carbon conservation toward the targeted biofuel/chemical will be delinearated. Specifically, a hybridized conversion platform for biofuel/chemical will be discussed.   Keywords: circular economy, waste valorization, carbon neutrality, biofuel (renewable energy)  ...

Surface/Interface Engineering of 2D Materials via Chemical Functionalization

Surface/Interface Engineering of 2D Materials via Chemical Functionalization   Jangyup Son (Senior researcher1, Associate Professor2) 1Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Korea 2Division of Nano and Information Technology, KIST School University of Science and Technology (UST), Jeonbuk 55324, Korea     Over the last three...