Author: 공과대학 교학팀

효율적인 동적 시스템 예측을 위한 데이터 중심 축소모델 연구

Data-driven reduced-order model for efficient prediction of structural dynamics   Haeseong Cho Department of Aerospace Engineering, Jeonbuk National University, Korea   With the advent of the 4th industrial revolution, the next-generation mechanical and aerospace industries require multi-disciplinary convergence technology, and multi-disciplinary simulations are drawing attention as an important tool for the design and operation of next-generation mechanical and aerospace systems. Recently, a data-driven model reduction method using data analysis or machine learning, is emerging, and is expected as a base technology for a digital twin for a complex multi-disciplinary system. In general, the methods that can be used to define the reduced-order model of a dynamic system are the intrusive model reduction method, which projects the governing equations of the system in a generalized coordinate system, and the non-intrusive model reduction method, which defines the input and output relationship of the data of interest. In this talk, the model reduction methods that defines a reduced model using the solution of a dynamic system such as the displacement of a structure will be introduced....

넓은 밴드갭 질화알루미늄 인공 광전자 시냅스 소자의 가속 학습

Rise of neuromorphic computing architectures: Accelerated Learning in wide-Band-Gap AlN artificial optoelectronic synaptic devices   Moonsang Lee,1,*   1Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea   Abstract We briefly introduce the rise of neuromorphic computing architectures for deep learning applications. After the overview, we...

Direct Observation and Control of Atomic-Scale Defects in Energy Materials

Direct Observation and Control of Atomic-Scale Defects in  Energy Materials Sung-Yoon Chung*   Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea    *E-mail: sychung@kaist.ac.kr    Abstract   The importance of direct physical imaging and chemical probing has been widely noted, as both can provide crucial and unexpectedly invaluable information in a variety of scientific fields, including not only materials science and condensed-matter physics but also brain science, photonics, biology, astronomy, and even research for historic materials. In particular, recent advances in spherical aberration correction in scanning transmission electron microscopy (STEM) have enabled the observation of a crystal lattice at a real atomic scale, making it possible to visualize the atomic columns of even light elements in angstrom resolution. In this talk, through exemplifying oxide-based energy-conversion materials for electrocatalytic activities, the beauty of combination of atomic-scale imaging based on STEM and theoretical calculations will be covered to provide a better insight into the correlation between physics, chemistry, and atomic-level imaging. ...